Synthesis and Structure of a New Layered Niobium Blue Bronze: Rb₂LaNb₂O₇

A. Robert Armstrong

ISIS Science Division, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, U.K.

Paul A. Anderson*

School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

Received January 4, 1993[®]

The reduced layered niobate Rb₂LaNb₂O₇ was synthesized via the reaction of RbLaNb₂O₇ with rubidium vapor at temperatures between 200 and 250 °C. The structures of both materials have been determined by Rietveld analysis of time-of-flight powder neutron diffraction data. The cream-colored host compound RbLaNb2O7 (I) crystallizes in the space group Imma with cell constants a = 5.4941(4) Å, b = 21.9901(6) Å, c = 5.4925(4) Å, and Z = 4. The blue-black reduced phase Rb₂LaNb₂O₇ (II) also adopts an orthorhombic structure (space group *Cmcm*) with a = 22.30955(9) Å, b = 5.69748(10) Å, c = 5.69365(10) Å, and Z = 4. Both compounds adopt pseudotetragonal orthorhombic structures based on the Ruddlesden-Popper structure type. In I, double perovskite layers are separated by a single rubidium ion and adjacent blocks adopt an eclipsed conformation. The niobium adopts a strongly distorted octahedral coordination and is displaced from the center of the octahedron. In II, the layers are separated by a pair of rubidium ions and adjacent blocks have the staggered conformation usually associated with the Ruddlesden-Popper structure. Considerable expansion within the layers is observed as a result of partial reduction of Nb^V to Nb^{IV}, accompanied by a reduction in the distortion of the NbO₆ octahedra. The fractional expansion within the layers arising largely from electronic effects exceeds that perpendicular to the layers arising from steric effects.

Introduction

Several families of layered oxides based on the perovskite (ABO₃) structure have been described, including the Aurivillius¹ and Ruddlesden-Popper series.² Both of these series contain perovskite-based $A_{n-1}B_nO_{3n+1}$ units comprising corner-linked BO₆ octahedra. The thickness of these perovskite slabs is governed by the number (n) of BO₆ octahedra that are stacked along the [001] direction perpendicular to the layers. Ruddlesden-Popper phases have the general formula $A'_{2}[A_{n-1}B_{n}O_{3n+1}]$, examples of which include Sr₂TiO₄, Sr₃Ti₂O₇, and Sr₄Ti₃O₁₀. A closely related series was first reported by Dion et al. and has the general formula A' $[A_{n-1}B_nO_{3n+1}]$.³ In most of these materials A' represents an alkali metal cation and B = Nb, the stacking sequence being dictated by the size of the alkali metal.

Compounds in the series A' $[A_{n-1}B_nO_{3n+1}]$ with n = 2-7 have been described.4 This group of compounds was recently dubbed the Dion-Jacobson series.⁵ The alkali metal cations can readily be exchanged in acid solution to form protonated derivatives $H[A_{n-1}B_nO_{3n+1}]$ which exhibit strong Brønsted acidity.⁶ These protonated species will form intercalation compounds with a

- (1) (a) Aurivillius, B. Ark. Kemi 1949, 1, 463. (b) Aurivillius, B. Ark. Kemi 1949, 1, 499. (c) Aurivillius, B. Ark. Kemi 1950, 2, 519.
- (2) (a) Ruddlesden, S.; Popper, P. Acta Crystallogr. 1957, 10, 538. (b) Ruddlesden, S.; Popper, P. Acta Crystallogr. 1958, 11, 54. (3) Dion, M.; Ganne, M.; Tournoux, M. Mater. Res. Bull. 1981, 16, 1429.
- (4) (a) Dion, M.: Ganne, M.; Tournoux, M. Rev. Chim. Miner. 1986, 23, 61. (b) Gopalakrishnan, J.; Bhat, V.; Raveau, B. Mater. Res. Bull. 1987, 22, 413. (c) Subramanian, M. A.; Gopalakrishnan, J.; Sleight, A. W. Mater. Res. Bull. 1988, 23, 837. (d) Jacobson, A. Lewandowski, J. T.; Johnson, J. W. J. Less-Common. Met. 1986, 116, 137.
- (5) Uma, S.; Raju, A. R.; Gopalakrishnan, J. J. Mater. Chem. 1993, 3, 709.
- (6)Jacobson, A. J.; Johnson, J. W.; Lewandowski, J. T. Inorg. Chem. 1985, 24, 3727.

range of organic bases.^{4b,7} Recently Uma et al. described the preparation of the group of compounds A2-xLa2Ti3-xNbxO10 which bridge the two series.⁵ In this case, the titanium to niobium ratio was used to control the alkali metal content. Attempts to optimize the properties of oxide superconductors highlight the importance of precise control over the oxidation state of the constituent atoms. Unfortunately, the conventional substitutional approach to the fine tuning of the oxidation state can often lead to unexpected structural rearrangements or entirely different products. For this reason the low-temperature reduction of existing oxides by alkali metal vapor,⁸ or by solvated electron solutions,⁹ is an attractive alternative strategy. Gómez-Romero et al. have reported the preparation of $H_{1+x}LaNb_2O_7$ by hydrogen reduction $HLaNb_2O_7$.¹⁰ The rich intercalation chemistry of the Dion-Jacobson phases, combined with the existence of Ruddlesden-Popper phases of the form $A_2La_2Ti_3O_{10}$ (A = alkali metal),¹¹ suggested that new Ruddlesden-Popper materials could be synthesized from Dion-Jacobson starting materials via alkali metal intercalation. As part of a program designed to synthesize novel conducting compounds via alkali metal insertion reactions, we have prepared the Ruddlesden-Popper material Rb₂LaNb₂O₇ by reaction of the n = 2 member of the Dion-Jacobson series, RbLaNb₂O₇, with rubidium vapor. The structures of both materials have been determined by Rietveld analysis of powder neutron diffraction data.

- (7) Jacobson, A. J.; Johnson, J. W.; Lewandowski, J. T. Mater. Res. Bull. 1987, 22, 45.
- (8) Zhou, W.; Anderson, P. A.; Liu, C.; Edwards, P. P. Physica C 1991, 190. 59.
- (9) Anderson, P. A.; Barr, D.; Edwards, P. P. Angew. Chem. 1991, 103, 1511; Angew. Chem., Int. Ed. Engl. 1991, 30, 1501.
- (10) Gómez-Romero, P.; Palacín, M. R.; Casañ, N.; Fuertes, A. Solid State Ionics 1993, 63-65, 424.
- (11) Gopalakrishnan, J.; Bhat, V. Inorg. Chem. 1987, 26, 4299.

© 1994 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, August 1, 1994.

Figure 1. Schematic representation of the structure of RbLaNb₂O₇.

Experimental Section

Synthesis. The host compound RbLaNb₂O₇ was prepared using the method of Gopalakrishnan *et al.*⁴⁰ A 25% excess of the Rb₂CO₃ starting material was used to allow for volatilization during the reaction. The powdered starting materials were given two firings of 20 h at 1110 °C, after which the sample was washed with distilled water and dried at 160 °C. The phase purity of the cream-colored parent phase was confirmed by powder X-ray diffraction. This parent phase was then allowed to react with a controlled amount of rubidium vapor at temperatures between 200 and 250 °C, in a scaled, evacuated quartz reaction tube, to yield the homogeneous blue-black solid Rb₂LaNb₂O₇.

Neutron Powder Diffraction. Neutron powder diffraction measurements were performed on the POLARIS high-intensity, mediumresolution diffractometer at the ISIS pulsed source of the Rutherford Appleton Laboratory. Data for the host phase was collected with the sample in a vanadium can, but since $Rb_2LaNb_2O_7$ was expected to be air sensitive, data for this compound were collected with the sample still in its quartz reaction vessel. In order to eliminate the amorphous silica background, data were also obtained from an empty sample tube. These data were then smoothed, appropriately scaled, and subtracted from the sample diffraction pattern to produce an essentially flat background.

The structures were refined by the Rietveld method using the program TF14LS based on the Cambridge Crystallographic Subroutine Library.12 Neutron scattering lengths of 0.709, 0.824, 0.7054, and 0.5803 (all $\times 10^{-12}$ cm) were assigned to Rb, La, Nb, and O, respectively.13 Gopalakrishnan et al. reported a primitive tetragonal structure for RbLaNb₂O₂ with a = 3.885(2) Å and c = 10.989(3) Å and suggested that the probable space group was either P4/m or P4/ mmm (no systematic absences).4b A schematic representation of this structure is given in Figure 1. The large size of Rb⁺ leads to eclipsing of perovskite blocks, unlike the staggered conformations adopted by KLaNb2O7 and NaLaNb2O7. Refinement in space group P4/mmm gave satisfactory results, but large temperature factors were observed for the oxygen atoms at the apexes of the NbO6 octahedra and there were a number of additional peaks that could not be fitted. Use of a modelindependent fit led to the identification of a $\sqrt{2} \times \sqrt{2} \times 2$ supercell. Determination of the systematic absences, and thus the space group, was complicated by substantial peak overlap even at long d spacings,

(13) Sears, V. F. Neutron New 1992, 3 (3), 26.

Figure 2. Profile fit for the refinement of the structure of $RbLaNb_2O_7$. The tick marks indicate the allowed reflections. The lower panel shows the difference/esd between calculated and observed profiles.

Table 1. Structural Parameters for RbLaNb₂O₇: Orthorhombic, Space group *Imma*: a = 5.4941(4) Å, b = 21.9901(6) Å, c = 5.4925(4) Å^a

atom	Wyckoff symbol	xla	y/b	z/c	Biso, Å ²
Nb	8h	0	0.35274(9)	0.4990(7)	0.30(3)
La	4e	0.5	0.25	0.4921(10)	0.24(4)
Rb	4a	0	0	0	1.98(7)
O1	4e	0	0.25	0.4469(12)	1.29(13)
O2	8h	0	0.4325(2)	0.5469(8)	1.06(6)
O3	8g	0.25	0.3435(2)	0.25	1.72(8)
04	8g	0.75	0.3275(2)	0.75	0.76(5)

^a $R_{wP} = 6.9\%$; $R_E = 5.2\%$; $R_t = 5.4\%$. $R_{wP} = [\sum_i w_i | y_i (\text{obs}) - y_i (\text{calc})!^2 / \sum_i w_i y_i^2 (\text{obs})]^{1/2}$; $R_E = [(N - P + C) / \sum_i w_i y_i^2 (\text{obs})]^{1/2}$, where N, P, and C are the number of observations, parameters, and constraints, respectively; $R_1 = [\sum_i I_{i_i} (\text{obs}) - (1/c) I_k (\text{calc}) | / \sum_i I_k (\text{obs})]$.

arising from the fact that $4a \sim c$. A number of possible tetragonal space groups consistent with the structural model were tested, with *P4/nnc* giving the best results. However none of these tetragonal models gave a good fit to the superlattice reflections, and the thermal parameters remained large for the apical oxygen atoms. This suggested that the true symmetry was orthorhombic, although the resolution of POLARIS was insufficient to reveal clear visible evidence of orthorhombic splitting. Adoption of the orthorhombic space group *Imma* enabled excellent fitting of the superlattice reflections. There was no evidence for preferred orientation in either this phase or the Rb intercalated product. The refinement converged to $R_{wp} = 6.9\%$, $R_E =$ 5.2%, and $R_t = 5.4\%$, with profile fit shown in Figure 2. The atomic coordinates and isotropic thermal parameters are shown in Table 1.

The initial structural model for Rb₂LaNb₂O₇ used in refinement assumed the ideal Ruddlesden-Popper structure, as adopted by Sr3-Ti₂O₇ (space group 14/mmm). A good fit to the data was obtained, but as with the host material, superlattice reflections were observed along with large temperature factors for the apical oxygen atoms. A modelindependent fit confirmed the presence of a $\sqrt{2} \times \sqrt{2} \times 1$ supercell. As was found with the parent compound, a satisfactory fit to the additional reflections was not possible by assuming a tetragonal structure. An orthorhombic model based on that reported by Elcombe et al. for the Ruddlesden-Popper phase Ca₃Ti₂O₇ was tested.¹⁴ In the case of Ca₃Ti₂O₂, the space group $Cmc2_1$, rather than the centrosymmetric Cmcm, was confirmed by convergent beam electron diffraction. The air sensitivity of Rb₂LaNb₂O₇ has precluded any electron diffraction measurements at present; thus, in the absence of any evidence for a lack of center of symmetry, the structure was refined in Cmcm. The refinement converged rapidly in this space group to $R_{wP} = 3.9\%$, $R_E =$ 1.2%, and $R_1 = 3.0\%$, with atomic coordinates and isotropic thermal parameters given in Table 2 and the profile fit being shown in Figure 3.

^{(12) (}a) Matthewman, J. C.; Thompson, P.; Brown, P. J. J. Appl. Crystallogr. 1982, 15, 167. (b) Brown, P. J.; Matthewman, J. C. Rutherford Appleton Lab. Rep. 1987, RAL-87-010.

⁽¹⁴⁾ Elcombe, M. M.; Kisi, E. H.; Hawkins, K. D.; White, T. J.; Goodman, P.; Matheson, S. Acta Crystallogr. B 1991, 47, 305.

Table 2. Structural Parameters for Rb₂LaNb₂O₇: Orthorhombic, Space Group *Cmcm*; a = 22.30955(9) Å, b = 5.69748(10) Å, c = 5.69365(10) Å^a

atom	Wyckoff symbol	sla	ylb	ъ	Bise. Å	site occ
Nb	8g	0.09369(4)	0.2475(4)	0.75	0.185(12)	
La	4c	0	0.2603(5)	0.25	0.38(2)	
Rb	85	0.19197(5)	0.7387(4)	0.75	0.68(3)	0.945(6)
01	4c	0	0.7018(6)	0.25	1.17(6)	
02	8g	0.17616(6)	0.7691(5)	0.25	0.78(2)	
03	8e	0.08704(7)	0.5	0.5	0.60(2)	
04	8e	0.07368(6)	0	0.5	0.36(2)	

 $^{a}R_{wP} = 3.9\%$; $R_{E} = 1.2\%$; $R_{I} = 3.0\%$.

Figure 3. Profile fit for the refinement of the structure of Rb2LaNb2O7

Table 3. Selected Bond Lengths for RbLaNb2O7 and Rb2LaNb2O7

Rbl	LaNb ₂ O ₂	Rb2LaNb2O7		
Nb-O1	2.277(8) × 1	Nb-O1	2.111(4) × 1	
Nb-O2	$1.774(7) \times 1$	Nb-O2	$1.842(4) \times 1$	
Nb-O3	$1.949(4) \times 2$	Nb-O3	2.029(3) × 2	
Nb-04	$2.024(4) \times 2$	Nb-04	$2.053(3) \times 2$	
La-O1	$2.758(8) \times 2$	La-O1	3.185(5) × 1	
	$3.082(8) \times 1$		$2.512(5) \times 1$	
	$2.411(8) \times 1$		2.855(5) × 2	
La-03	$2.807(7) \times 4$	La-03	$2.768(3) \times 4$	
La-O4	$2.607(6) \times 4$	La-O4	2.632(3) × 4	
Rb-O2	$3.351(6) \times 2$	Rb-O2	$2.874(4) \times 1$	
	2.898(6) × 2		$2.942(4) \times 1$	
	$3.133(6) \times 4$		$2.914(4) \times 1$	
			$2.827(4) \times 1$	
		Rb-03	$3.059(3) \times 2$	
		Rb-O4	3.348(3) × 2	

Results and Discussion

Synthesis. While the preparation of Rb₂LaNb₂O₇ proved remarkably straightforward, attempts to prepare intermediate compositions Rb_{1+x}LaNb₂O₇ ($0 \le x \le 1$) at this temperature yielded a mixture of the two end members. Annealing at higher temperatures around 500 °C was required to produce a singlephase product. Higher temperatures still (~600 °C) led to rubidium loss and decomposition of these materials of intermediate stoichiometry, the products being the end members once again. Thus, while a solid solution Rb_{1+x}LaNb₂O₇ exists for 0 $\le x \le 1$, the two end members exhibit enhanced stability.

Structures of $Rb_2LaNb_2O_7$ and $Rb_2LaNb_2O_7$. Selected bond lengths for both $RbLaNb_2O_7$ and $Rb_2LaNb_2O_7$ are shown in Table 3. In the host compound, $RbLaNb_2O_7$, a strongly distorted coordination environment for niobium is revealed, involving a ferroelectric displacement from the center of its octahedron to give one short, one long, and four normal length bonds. Such a distortion of the NbO₆ octahedron has been

Figure 4. Structure of RbLaNb₂O₇. Nb-O bonds are shown. Large circles represent Rb, small black circles Nb, small pale circles O, and small darker circles La.

Figure 5. Structure of Rb₂LaNb₂O₇. Nb—O bonds are shown. Large circles represent Rb, small black circles Nb, small pale circles O, and small darker circles La.

reported for several oxy compounds of Nb^V; for example, NbOPO₄ has bond lengths nearly identical to those in RbLaNb₂O₇.¹⁵ The structure of RbLaNb₂O₇ is shown in Figure 4.

For Rb₂LaNb₂O₇, lattice constants of a = 22.30955(9) Å, b = 5.69748(10) Å, and c = 5.69365(10) Å indicate a marked expansion on Rb intercalation. This tepresents an expansion

⁽¹⁵⁾ Longo, J. M.; Kierkegaard, P. Acta Chem. Scand. 1966, 20, 72.

A New Layered Niobium Blue Bronze

of 1.5% perpendicular to the layers and 3.7% within the layers, contrary to what might be expected from purely size considerations. The expansion within the layers presumably occurs as a result of partial reduction of Nb^V to Nb^{IV}. Examination of the Nb–O bond lengths (Table 3) shows a sizable contraction in the Nb–O1 distance and a smaller expansion in the Nb–O2 distance. This discrepancy may arise as a result of partial Nb^{IV} character since Nb^{IV} as a d¹ ion would be expected to show a Jahn–Teller compression. Refinement of the rubidium site occupancy yielded a value of 0.945(6). The structure is shown in Figure 5.

The concept of bond valence sums (BVS) devised by Brown has been widely applied to estimate valences in inorganic solids, most recently in the field of high-temperature superconductivity. BVS for niobium in RbLaNb₂O₇ and Rb₂LaNb₂O₇ have been calculated using the formula of Brown and Altermatt.¹⁶ The BVS calculated for Nb in RbLaNb₂O₇ is 5.10, while that for Rb₂LaNb₂O₇ is 4.60, in excellent agreement with the theoretical valence of 4.56, assuming that rubidium incorporation leads to reduction of Nb^{V} to Nb^{IV} .

Conclusion

We have demonstrated that controlled reaction with alkali metal vapor represents a relatively straightforward yet powerful method to synthesize new solids. In particular, it provides a means of modifying the properties of insulating layered or microporous materials by doping them with electrons. Rubidium insertion into RbLaNb₂O₇ leads to the formation of the mixed-valence Ruddlesden—Popper compound Rb₂LaNb₂O₇ and results in a sizable expansion within the layers and a reduction in the ferroelectric distortion of the NbO₆ octahedra. Work is underway to investigate the electronic and magnetic properties of this and related materials.

Acknowledgment. We thank the SERC for provision of neutron beam facilities. The structure diagrams were drawn using ATOMS by Shape Software. P.A.A. thanks the Royal Society for the provision of a University Research Fellowship.

^{(16) (}a) Brown, I. D. Chem. Soc. Rev. 1978, 7, 359. (b) Brown, I. D.; Altermatt, D. Acta Crystallogr. B 1985, 41, 244.